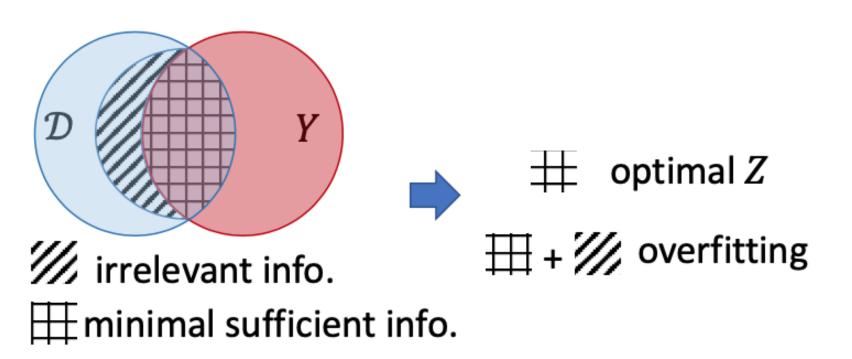

Graph Information Bottleneck Tailin Wu*, Hongyu Ren*, Pan Li, Jure Leskovec Stanford University, Purdue University **Representation Learning on Graphs** Graph Information Bottleneck



However, they are susceptible to adversarial attacks on node features or graph structure.

Optimal representation based on the information bottleneck principle:

- Maximally informative of the prediction Y.
- Leverage minimally sufficient information from input graph D (node features X, graph structure A)

We design operators for GNN

• Iteratively compress the information of X and A.

Optimize variational bounds of structure IB and feature IB.

$$\begin{split} & (\mathcal{D}) \leq I(\mathcal{D}; \{Z_X^{(l)}\}_{l \in S_X} \cup \{Z_A^{(l)}\}_{l \in S_A}) \leq \sum_{l \in S_A} \operatorname{AIB}^{(l)} + \sum_{l \in S_X} \operatorname{XIB}^{(l)}, \text{where} \\ & = \mathbb{E}\left[\log \frac{\mathbb{P}(Z_A^{(l)} | A, Z_X^{(l-1)})}{\mathbb{Q}(Z_A^{(l)})}\right], \operatorname{XIB}^{(l)} = \mathbb{E}\left[\log \frac{\mathbb{P}(Z_X^{(l)} | Z_X^{(l-1)}, Z_A^{(l)})}{\mathbb{Q}(Z_X^{(l)})}\right], \end{split}$$

Apply GIB to GAT

• Model $P(Z_A^{(l)}|A, Z_X^{(l-1)})$ as Bernoulli distribution: GIB-Bern. • Model $P(Z_A^{(l)}|A, Z_X^{(l-1)})$ as categorical distribution: GIB-Cat. • Model $P(Z_X^{(l)}|Z_X^{(l-1)}, Z_A^{(l)})$ as Gaussian distribution

Algorithm 2: NeighborSample (categorical)	Algorithm 3: NeighborSa
Input: $Z_X^l, \mathcal{T}, V_{vt}, a$, as defined in Alg. 1;	Input: $Z_X^l, \mathcal{T}, V_{vt}, a$, as de
Output: $Z_{A,v}^{(l+1)}$	Output: $Z_{A,v}^{(l+1)}$ 1.For $t \in [\mathcal{T}]$, do:
1.For $t \in [\mathcal{T}]$, do:	1.For $t \in [\mathcal{T}]$, do:
2. $ \downarrow \phi_{vt}^{(l)} \leftarrow \operatorname{softmax}(\{(\tilde{Z}_{X,v}^{(l-1)} \oplus \tilde{Z}_{X,u}^{(l-1)})a^T\}_{u \in V_{vt}}) $	2. $ \lfloor \phi_{vt}^{(l)} \leftarrow \text{sigmoid}(\{(\tilde{Z}$
3. $Z_{A,v}^{(l+1)} \leftarrow \bigcup_{t=1}^{\mathcal{T}} \{ u \in V_{vt} u \stackrel{\text{iid}}{\sim} \operatorname{Cat}(\phi_{vt}^{(l)}), k \text{ times} \}$	3. $Z_{A,v}^{(l+1)} \leftarrow \bigcup_{t=1}^{\mathcal{T}} \{ u \in V_{vt} \}$

Experiments

Adversarial attack

	Model	Clean (%)	Evasive (%)			
	WIOUEI		1	2	3	4
Cora	GCN	80.0 ±7.87	51.5 ± 4.87	38.0 ± 6.22	31.0 ± 2.24	26.0 ± 3.79
	GCNJaccard	75.0 ± 5.00	48.5 ± 6.75	36.0 ± 6.51	32.0 ± 3.25	30.0 ± 3.95
	RGCN	80.0 ±4.67	49.5 ± 6.47	36.0 ± 5.18	$30.5{\scriptstyle\pm3.25}$	25.5 ± 2.09
	GAT	77.8 ± 3.97	48.0±8.73	39.5 ± 5.70	$36.5{\scriptstyle\pm 5.48}$	$32.5{\pm}5.30$
	GIB-Cat	77.6 ± 2.84	63.0 ±4.81	52.5 ±3.54	44.5 ±5.70	36.5 ±6.75
	GIB-Bern	78.4 ± 4.07	64.0 ±5.18	51.5 ±4.54	43.0 ±3.26	37.5 ±3.95
Pubmed	GCN	82.6±6.98	39.5 ± 4.81	32.0±4.81	31.0±5.76	31.0±5.76
	GCNJaccard	82.0±7.15	37.5 ± 5.30	31.5 ± 5.18	30.0±3.95	30.0±3.95
	RGCN	79.0 ± 5.18	39.5 ± 5.70	33.0 ± 4.80	31.5 ± 4.18	30.0 ± 5.00
	GAT	78.6 ± 6.70	41.0 ± 8.40	$33.5{\pm}4.18$	$30.5 {\pm} 4.47$	31.0 ± 4.18
	GIB-Cat	85.1 ±6.90	72.0 ±3.26	51.0 ±5.18	37.5 ±5.30	31.5 ±4.18
	GIB-Bern	86.2 ±6.54	76.0 ±3.79	50.5 ±4.11	$\textbf{37.5}{\scriptstyle \pm 3.06}$	31.5 ±1.37
	GCN	71.8 ± 6.94	42.5 ± 7.07	27.5 ± 6.37	18.0 ± 3.26	15.0 ± 2.50
Citeseer	GCNJaccard	72.5±9.35	41.0±6.75	32.5 ± 3.95	20.5 ± 3.70	13.0 ± 1.11
	RGCN	73.5 ±8.40	41.5 ± 7.42	24.5 ± 6.47	$18.5 {\pm} 6.52$	13.0 ± 1.11
	GAT	72.3 ± 8.38	49.0 ±9.12	33.0±5.97	$22.0 {\pm} 4.81$	18.0 ± 3.26
	GIB-Cat	68.6±4.90	51.0 ±4.54	39.0 ±4.18	32.0 ±4.81	26.5 ±4.54
	GIB-Bern	71.8 ± 5.03	49.0 ±7.42	37.5 ±7.71	$32.5{\scriptstyle\pm4.68}$	23.5 ±7.42

Feature attack

Dataset	Model	Feature noise ratio (λ)			
Dataset		0.5	1	1.5	
Cora	GCN	64.0 ± 2.05	41.3 ± 2.05	31.4 ± 2.81	
	GCNJaccard	61.1±2.18	41.2 ± 2.28	31.8 ± 2.63	
	RGCN	57.7±2.27	39.1 ± 1.58	29.6 ± 2.47	
Cora	GAT	62.5±1.97	41.7 ± 2.32	$29.8{\scriptstyle\pm2.98}$	
	AIB-Cat	67.9 ± 2.65	49.6 ±5.35	38.4 ±5.06	
	AIB-Bern	68.8 ±1.85	49.0±2.87	37.1±4.47	
	GIB-Cat	67.1±2.21	49.1±3.67	37.5 ± 4.76	
	GIB-Bern	69.0 ±1.91	51.3 ±2.62	38.9 ±3.38	
	GCN	61.3 ± 1.52	50.2 ± 2.08	44.3±1.43	
	GCNJaccard	62.7 ± 1.25	51.9±1.53	45.1 ± 2.04	
Pubmed	RGCN	58.4±1.74	49.0 ± 1.65	43.9±1.29	
rubilleu	GAT	62.7 ± 1.68	50.2 ± 2.35	43.7±2.43	
	AIB-Cat	64.5 ± 2.13	50.9±3.83	43.0±3.73	
	AIB-Bern	61.1±2.70	47.8 ± 3.65	42.0±4.21	
	GIB-Cat	67.1 ±4.33	57.2 ±5.27	51.5 ±4.84	
	GIB-Bern	64.9 ±2.52	54.7 ±1.83	48.2 ±2.10	

ample (Bernoulli) lefined in Alg. 1;

 $\tilde{Z}_{X,v}^{(l-1)} \oplus \tilde{Z}_{X,u}^{(l-1)} a^T \}_{u \in V_{vt}})$ $\int_{vt} |u \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\phi_{ut}^{(l)})\}$

