

Learning to Accelerate PDEs via Latent Global Evolution

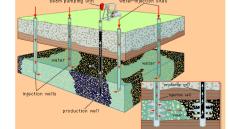
Tailin Wu¹, Takashi Maruyama¹², Jure Leskovec¹

Motivation

Partial differential equations (PDEs) are critical in science and engineering. Two major tasks:

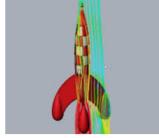
- Forward simulation: predicting the time-evolution of the system
- Inverse optimization: optimizing the boundary, etc. given forward model

Weather forecasting



Subsurface fluid simulation

for oil production



Equipment manufacturing

Key challenge: slow to simulate

- Due to large-scale in size: state dimension > millions per time step
- Requiring up to High Performance Computing (HPC)

Existing simulators

Prior methods and their challenges:

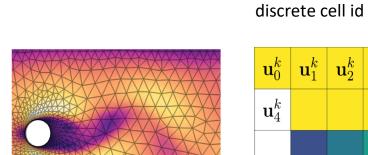
Classical solvers

Based on Partial Differential Equations (PDEs), discretize the PDE, then use finite difference, finite element, etc. to evolve the system.

$$\frac{\partial \mathbf{u}}{\partial t} = F(x, \mathbf{u}, \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}, \ldots) \quad \mathbf{u}(t, \mathbf{x}) \longrightarrow \mathbf{u}_i^k$$

Pros: (1) First principle-based, (2) accurate, (3) have error guarantee.

Challenges: Slow (computation scales with # cells)



mesh

discrete time index

Deep learning-based surrogate models

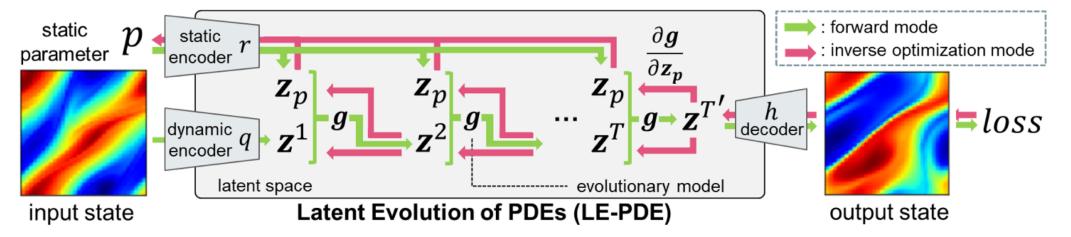
Pros: (1)Directly learn from data, alleviating much engineering efforts. (2) Offer speedup via larger spatial/temporal intervals and explicit forward

Challenge: still typically evolve the system in the input space, which can still be slow and need huge computation (e.g. for millions cells, need to update each cell at each time step)

Reduced-order modeling:

Prior methods have limitations in their expressivity (e.g. linear projection to basis functions), generality (e.g. specific to certain classes of problems), or degradation of accuracy.

QR code for paper



¹Stanford University, ²NEC Corporation

Approach

Main idea: Learn a model that evolves the state in a global latent space, with a learning objective for accurate long-term prediction in latent and input space.

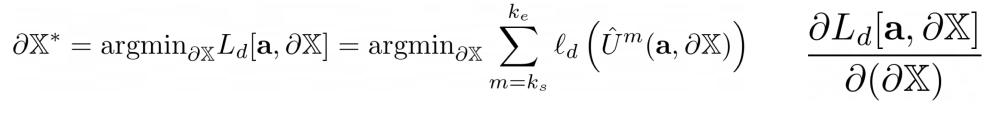
We introduce LE-PDE, a simple, fast and scalable method to accelerate the forward simulation and inverse optimization of PDEs

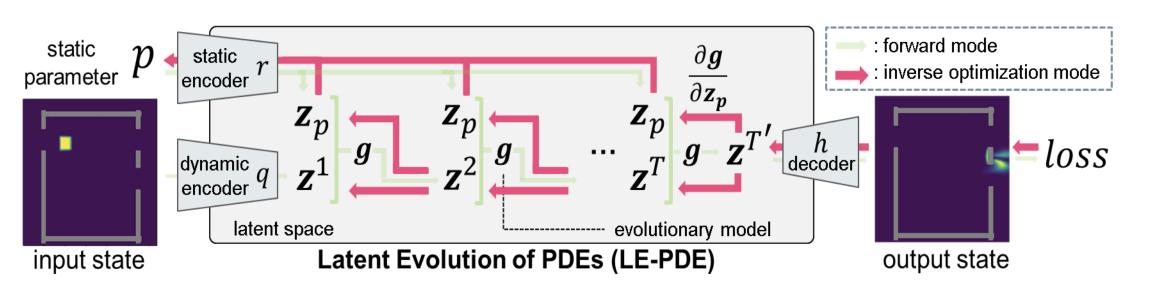
We map an input state into a latent space (encoder: q) and learn a model g that can evolve the state in the latent space instead of learning the evolution in the input space. And only when it needed, we decode it back into the original input space (decoder h).

Learning objective

$$L = \frac{1}{K} \sum_{k=1}^{K} (L_{\text{multi-step}}^{k} + L_{\text{recons}}^{k} + L_{\text{consistency}}^{k}).$$
where
$$\begin{cases}
L_{\text{multi-step}}^{k} = \sum_{m=1}^{M} \alpha_{m} \ell(\hat{U}^{k+m}, U^{k+m}), \text{(consistency in input space)} \\
L_{\text{recons}}^{k} = \ell(h(q(U^{k})), U^{k}) \text{ (reconstruction)} \\
L_{\text{consistency}}^{k} = \sum_{m=1}^{M} \frac{||g(\cdot, r(p))^{(m)} \circ q(U^{k}) - q(U^{k+m})||_{2}^{2}}{||q(U^{k+m})||_{2}^{2}} \\
\text{(consistent long-term prediction in latent space)}
\end{cases}$$

Inverse mode: use gradient descent to optimize static parameter (e.g. boundary), through the unrolled latent evolution:





Result

LE-PDE achieves up to 15x speedup w.r.t. state-of-the-art deep learningbased surrogate models with **competitive** accuracy.

PDE simulation: 1D

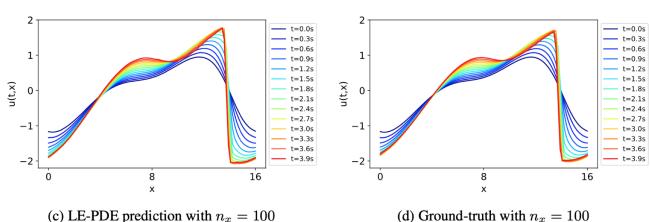


Table 1: Performance of models in 1D for scenarios E1,E2, E3. Accumulated error = $\frac{1}{n} \sum_{t=r} MSE$.

		Accumulated Error ↓					Runtime [ms] ↓				Representation dim \downarrow	
	(n_t,n_x)	WENO5	FNO-RNN	FNO-PF	MP-PDE	LE-PDE (ours)	WENO5	MP-PDE	LE-PDE full (ours)	LE-PDE evo (ours)	MP-PDE	LE-PDE (ours)
E1	(250, 100)	2.02	11.93	0.54	1.55	1.13	1.9×10^{3}	90	20	8	2500	128
E1	(250, 50)	6.23	29.98	0.51	1.67	1.20	1.8×10^{3}	80	20	8	1250	128
E1	(250, 40)	9.63	10.44	0.57	1.47	1.17	$1.7 imes 10^3$	80	20	8	1000	128
E2	(250, 100)	<u>1.19</u>	17.09	2.53	1.58	0.77	1.9×10^3	90	20	8	2500	128
E2	(250, 50)	5.35	3.57	2.27	1.63	1.13	$1.8 imes 10^3$	90	20	8	1250	128
E2	(250, 40)	8.05	3.26	2.38	<u>1.45</u>	1.03	$1.7 imes 10^3$	80	20	8	1000	128
E3	(250, 100)	4.71	10.16	5.69	4.26	3.39	4.8×10^{3}	90	19	6	2500	64
E3	(250, 50)	11.71	14.49	5.39	3.74	3.82	4.5×10^{3}	90	19	6	1250	64
E3	(250, 40)	15.94	20.90	5.98	3.70	3.78	4.4×10^3	90	20	8	1000	128

PDE simulation: 2D

PDE simulation: 3D (4 million cells/step)

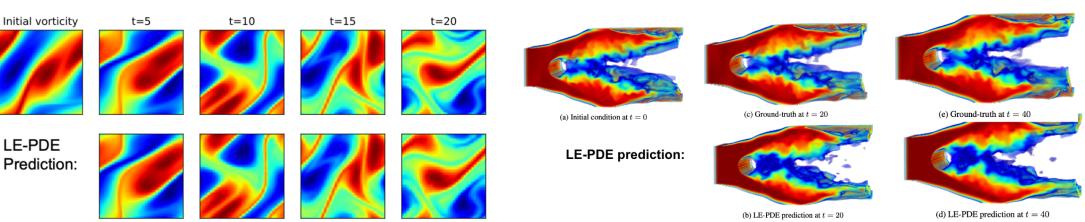


Table 2: Performance of different models in 2D Navier-Stokes flow. Runtime is using the $\nu =$ 10^{-3} , N = 1000 for predicting 40 steps in the future.

Method	Representation dimensions	Runtime full [ms]	Runtime evo [ms]		$ \nu = 10^{-4} $ $ T = 30 $ $ N = 1000 $		$ \nu = 10^{-5} $ $ T = 20 $ $ N = 1000 $
FNO-3D [14]	4096	24	24	0.0086	0.1918	0.0820	0.1893
FNO-2D [14]	4096	140	140	0.0128	0.1559	0.0834	0.1556
U-Net [68]	4096	813	813	0.0245	0.2051	0.1190	0.1982
TF-Net [26]	4096	428	428	0.0225	0.2253	0.1168	0.2268
ResNet [69]	4096	317	317	0.0701	0.2871	0.2311	0.2753
LE-PDE (ours)	256	48	15	0.0146	0.1936	0.1115	0.1862

Inverse optimization

