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• Why AI + Science?
• AI for science: important questions, recent advances and relations with 

machine learning
• AI for scientific simulation
• AI for scientific design
• AI for scientific discovery

• Science for AI: important questions and recent advances
• Discussion: where to find the next AlphaFold and chatGPT?

• What is the next big problems for AI + Science?
• Potential bottlenecks and mid-term roadmap
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AI + Science
= (AI for Science) + (Science for AI)
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What disciplines?
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AI + Science
= (AI for Science) + (Science for AI)
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Why AI for Science:
(*) Science solves critical problems
(1) AI significantly boosts the speed and accuracy
(2) AI helps explore vast design/control space
(3) AI helps uncover scientific knowledge
…

Why Science for AI:
(1) Novel challenges
(2) Novel insights
(3) Novel tools
…

Why AI + Science?
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Why AI for Science?

Why Science?
• Solves critical problems for 

humans and society:
• Biomedicine
• Materials
• Energy
• Mechanical engineering
• Aerospace
• Manufacturing
• Revert global warming
• …



13

Why AI for Science?

Why Science?
• Long-term survival of human as a 

species:
• If the world GDP grows 2% per year, in 200 

years, it needs to be 1.02100=52x current GDP; 
in 1000 years, it needs to be 4x108 times.

• If slowed down, involution (内卷) will be more 
severe.

• The long-term solution: make cake bigger（做
大蛋糕）. Where is the cake?

• The cake is at Solar system:
• The Sun outputs 109 more energy than 

that reaches Earth, can support an 
economy 109 times the current GDP.

• Requires advances in all scientific 
disciplines: materials, aerospace, 
biomedicine, ME, energy, …
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(*) Science solves critical problems
(1) AI significantly boosts the speed and accuracy
(2) AI helps explore vast design/control space
(3) AI helps uncover scientific knowledge
…

Why AI for Science:
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AI for Science: how AI boosts science
(1) AI significantly boosts the speed and accuracy

GraphCast [1] by DeepMind outperforms traditional methods in accuracy for 10-day forecast. 
Takes only 60s to predict on a TPU, while traditional method takes 1h running on 11,664 CPU 
cores.

[1] Lam, Remi, et al. "GraphCast: Learning skillful medium-range global 
weather forecasting." arXiv preprint arXiv:2212.12794 (2022).
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AI for Science: how AI boosts science
(1) AI significantly boosts the speed and accuracy

AlphaFold 2 [1] successfully predicts 98.5% of 
human proteins with atomic accuracy

[1] Jumper, John, et al. "Highly accurate protein structure prediction with 
AlphaFold." Nature 596.7873 (2021): 583-589.
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AI for Science: how AI boosts science
(2) AI helps explore vast design/control space

DeepMind used deep reinforcement learning (RL) for controlling [1] fusion plasma, and control 
novel plasma shapes.

[1] Degrave, Jonas, et al. "Magnetic control of tokamak plasmas through deep 
reinforcement learning." Nature 602.7897 (2022): 414-419.
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AI for Science: how AI boosts science
(3) AI helps uncover scientific knowledge
AI Feynman 2.0 [1]: rediscover top-100 physics equations in Feynman lectures

[1] Udrescu, Silviu-Marian, et al. "AI Feynman 2.0: Pareto-optimal symbolic regression 
exploiting graph modularity." NeurIPS 2020
[2] Liu, Ziming, and Max Tegmark. "Machine learning conservation laws from 
trajectories." Physical Review Letters 126.18 (2021): 180604.
[3] Iten, Raban, et al. "Discovering physical concepts with neural networks." Physical 
review letters 124.1 (2020): 010508.

Some equations discovered by AI Feynman 2.0:

AI Poincaré [2]: discover conservation laws from data
[3] learns physical concepts, and re-discovers that solar system is heliocentric
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AI for Science: how AI boosts science

Science for AI: how science boosts AI
(1) Novel challenges
(2) Novel insights
(3) Novel tools
…

Why AI + Science?

(*) Science solves critical problems
(1) AI significantly boosts the speed and accuracy
(2) AI helps explore vast design/control space
(3) AI helps uncover scientific knowledge
…
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Science for AI: how science boosts AI
(1) Novel challenges

A. Large-scale
• Large Hadron Collider (LHC): Each run (12h) generates 2000,000TB of data

• Compare that chatGPT uses 570GB of data to train
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Science for AI: how science boosts AI
(1) Novel challenges

A. Large-scale
• Simulation of realistic systems may need millions/billions of particles/cells per time step

hypersonic flowastrophysics Controlled nuclear fusion

@LLNL@Fiuza
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Science for AI: how science boosts AI
(1) Novel challenges

B. Generalization and robustness

• How to generalize to test dataset 
with distribution shift?

• How to be more robust to noise?
• How to deal with small number of 

examples
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Science for AI: how science boosts AI
(2) Novel insights

Concepts Source Application
Symmetry physics equivariant GNN [1]
Diffusion physics Diffusion models [2]
Energy physics Energy-based models, Boltzmann machines
Hamiltonian physics Hamiltonian Monte Carlo [3], Hamiltonian Neural Networks [4]
Grid cells neuroscience Grid cells for navigation [5]
Working memory neuroscience Working Memory Graphs [6]
… … …

[4] Greydanus, Samuel, Misko Dzamba, and Jason Yosinski. "Hamiltonian neural 
networks." Advances in neural information processing systems 32 (2019).
[5] Banino, Andrea, et al. "Vector-based navigation using grid-like representations in 
artificial agents." Nature 557.7705 (2018): 429-433.
[6] Loynd, Ricky, et al. "Working memory graphs." ICML 2020

Proposed by Max Welling et al, who has a physics background
Proposed by Surya Ganguli et al., who is Stanford applied 
physics professor

[1] Satorras, Vıctor Garcia, Emiel Hoogeboom, and Max Welling. "E 
(n) equivariant graph neural networks." ICML 2021
[2] Sohl-Dickstein, Jascha, et al. "Deep unsupervised learning using 
nonequilibrium thermodynamics." ICML 2015.
[3] Duane, S. "Kennedy, AD, Pendleton, BJ, and Roweth, 
D.(1987),“Hybrid Monte Carlo,”." Physics Letters.
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Science for AI: how science boosts AI
(3) Novel tools

Quantum computing for AI Neuromorphic computing [1]

1000x more energy efficient

[1] Rao, Arjun, et al. "A long short-term memory for AI applications in spike-based 
neuromorphic hardware." Nature Machine Intelligence 4.5 (2022): 467-479.

Photonic crystal
up to 1000x faster in 
computing speed with light
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AI for Science: how AI boosts science

Science for AI: how science boosts AI
(1) Novel challenges
(2) Novel insights
(3) Novel tools
…

Why AI + Science?

(*) Science solves critical problems
(1) AI significantly boosts the speed and accuracy
(2) AI helps explore vast design/control space
(3) AI helps uncover scientific knowledge
…
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Why AI + Science?

Because it is interesting!



• Why AI + Science?
• AI for science: important questions, recent advances and relations with 

machine learning (ML)
• AI for scientific simulation
• AI for scientific design
• AI for scientific discovery

• Science for AI: important questions and recent advances
• Discussion: where to find the next AlphaFold and chatGPT?

• What is the next big problems for AI + Science?
• Potential bottlenecks and mid-term roadmap
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AI for science: questions, advances and relations with ML

Scientific 
System Model

Discovery 
(structures, laws)

Design
(parameters, control, 
experimentation)

Simulation
(dynamics, 
steady state)

Fundamental across science

System Model

Discovery

Design Simulation
Fundamental in machine learning
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AI for science: questions, advances and relations with ML

1. AI for scientific simulation
2. AI for scientific design
3. AI for scientific discovery

Scientific 
System Model

Discovery 
(structures, laws)

Design
(parameters, control, 
experimentation)

Simulation
(dynamics, 
steady state)

Fundamental across science
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AI for science: questions, advances and relations with ML

1. AI for scientific simulation
2. AI for scientific design
3. AI for scientific discovery

Model

Discovery 
(structures, laws)

Design
(parameters, control, 
experimentation)

Simulation
(dynamics, 
steady state)

Scientific
System

Fundamental across science
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AI for scientific simulation

Scientific simulation: simulate the dynamics or steady state of the system, given 
initial state, boundary condition and parameters of the system

AI for scientific simulation: develop machine learning (ML) methods for scientific 
simulation, improving its speed and/or accuracy
• ML for simulating dynamics
• ML for simulating steady state
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ut: original state of the system. Can be an infinite-dimensional function 𝑢(𝑡, 𝑥)
as solution to a PDE, or a graph (e.g., mesh, particles, molecules)

u0 u1 u2 uT…

a: static parameters of the system that does not change with time       
(e.g., parameters of PDE, spatially varying diffusion coefficient)

: Evolution. Can be a PDE evolved by classical solver, or evolution in the real world 

PDE: partial differential equation

: boundary condition of the system

Dynamical system: forward simulation
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Spectrum of methods for simulating dynamics 

First principle Data driven

Classical solver Pure deep learning

Accurate;
Interpretable;
Error guarantee

Slow;
Assumption may 
be incorrect

Fast (10 – 104x);
Can directly learn 
from data

Challenge in 
long-term acc.
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Classical solvers:
Based on Partial Differential Equations (PDEs)

● Pros: (1) Based on first principles and interpretable, (2) accurate, (3) have error guarantee.
● Challenges: Slow and computational expensive, due to

(1) Small time interval to ensure numerical stability, or use implicit method.
(2) For multi-resolution systems, typically need to resolve to the lowest resolution

Pros and challenges:

Discretize the PDE, then use finite difference, finite 
element, finite volume, etc. to evolve the system.

mesh grid
discrete time index 
discrete cell id

Classical solvers and limitations
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Recently, deep learning based surrogate modeling has emerged as attractive alternative to 
replace or complement classical solvers. They:
● Offer speedup via:

○ Larger spatial resolution
○ Larger time intervals
○ Use explicit forward
○ Better representations

Deep learning-based surrogate models
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ut: original state of the system. Can be an infinite-dimensional function 𝑢(𝑡, 𝑥)
as solution to a PDE, or a graph (e.g., mesh, particles, molecules)

u0 u1 u2 uT…

a: static parameters of the system that does not change with time       
(e.g. parameters of PDE, spatially varying diffusion coefficient)

PDE: partial differential equation

: boundary condition of the system

: neural surrogate models (CNN, GNN, neural operators)

?

Neural surrogate models
Goal: learn 𝑓! that maps 𝑢" to 𝑢"#$:
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…

a: static parameters of the system that does not change with time       
(e.g. parameters of PDE, spatially varying diffusion coefficient)

: boundary condition of the system

?

u0

Neural surrogate models

U0 U1 U2 UT

Ut: representation (表示) of the system.

?

Goal: learn 𝑓! that maps 𝑈" to 𝑈"#$ and the encoder 𝑞%:

: neural surrogate models (CNN, GNN, neural operators)
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Neural surrogate models

Challenges:
● Large-scale: have only been applied to relatively small scale (~10k state size) systems, 

much less than millions or billions of state size in real systems
● Multi-resolution: how to simulate multi-resolution/multi-scale system both accurately and 

fast
● Long-term prediction accuracy: how can it reduce long-term error accumulation
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Spectrum of methods for simulating dynamics 

First principle

Classical solver Pure deep learning

Accurate;
Interpretable;
Error guarantee

Slow;
Assumption may 
be incorrect

Fast (10 – 104x);
Can directly learn 
from data

Challenge in 
long-term acc.

Solver-in-the-loop

Combine the 
advantages of 
both method

Deep learning incorporating 
inductive biases (symmetry, 
structures, etc.)

more accurate;
faster

Data driven

+ better training objectives
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Case study: GNN-based simulation

ut: state of the system. Represented as a graph (e.g., mesh, particles, molecules)
: Graph Neural Network (GNN)

Fluid dynamics, 
computer graphics

Such graph-structured data is universal across disciplines:

Mesh-based 
simulation for PDEs

Dislocation in 
materials

Proteins and small 
molecules
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Case study: GNN-based simulation

GNS

(Sanchez-Gonzalez et al., 
ICML 2020)

MeshGraphNets LAMP

HGNS

Momentum-
conserved CConv

(Pfaff et al., ICLR 2021, 
outstanding paper)

(Wu et al., KDD 2022)

(Wu et al., ICLR 2023, 
spotlight)

(Prantl et al., 
NeurIPS 2022)

symmetry

large-scale

multi-resolution

GraphCast

(Lam et al., 2022)
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Case study: Graph Network Simulator (GNS) 

Graph Network Simulator (GNS) [1] introduced a GNN-based simulator that 
learns to simulate particle-based systems 

Predicted simulation after 
rendering

GNN Model predicts particle 
positions and velocity

[1] Sanchez-Gonzalez, Alvaro, et al. "Learning to simulate complex physics with graph 
networks." International conference on machine learning. PMLR, 2020.
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Case study: Graph Network Simulator (GNS) 
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Case study: Graph Network Simulator (GNS) 

Training: trained with 1-step prediction, minimizing MSE.
To improve long-term prediction, add Gaussian noise on the input

Inference: autoregressively rollout for hundreds of steps

𝐿 = 𝔼 𝑓! 𝒖" + 𝝈 ⋅ 𝝐 − 𝒖"#$ % 𝝐 ∼ 𝑵 𝟎, 𝑰 , 𝝈: amplitude of noise on each 
feature
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Case study: Graph Network Simulator (GNS) 

Result:
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Case study: GNN-based simulation

GNS

(Sanchez-Gonzalez et al., 
ICML 2020)

Limitation:
• Small scale (up to 20k 

particles)
• Long-term accuracy

MeshGraphNets LAMP

HGNS

Momentum-
conserved CConv

(Pfaff et al., ICLR 2021, 
outstanding paper)

(Wu et al., KDD 2022)

(Wu et al., ICLR 2023, 
spotlight)

(Prantl et al., 
NeurIPS 2022)

symmetry

large-scale

multi-resolution

GraphCast

(Lam et al., 2022)
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Case study: Hybrid Graph Network Simulator (HGNS)

Subsurface (consisting of cells, wells, 
fractures, etc.) 

Task: Subsurface fluid simulation (critical in energy, carbon capture, etc.)
Main contribution: Introduced HGNS [1] for fluid simulation, which use 
• multi-step prediction during training to improve long-term prediction accuracy
• Sector-based training and inference

[1] Wu, Tailin, et al. "Learning large-scale subsurface simulations with a hybrid graph 
network simulator." SIGKDD 2022.

Results: Up to 18x faster than classical solver. Apply to 10million cells per step. Deployed in industry
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Case study: GNN-based simulation

GNS

(Sanchez-Gonzalez et al., 
ICML 2020)

MeshGraphNets LAMP

HGNS

Momentum-
conserved CConv

(Pfaff et al., ICLR 2021, 
outstanding paper)

(Wu et al., KDD 2022)

(Wu et al., ICLR 2023, 
spotlight)

(Prantl et al., 
NeurIPS 2022)

symmetry

large-scale

multi-resolution

GraphCast

(Lam et al., 2022)
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Case study: GraphCast

Prediction by GraphCast

Task: Weather forecasting (mid-range, 10-day)
Main contribution: Introduced GraphCast [1]:
• Multi-scale GNN
• Annealed multi-step learning objective
Results: outperforms state-of-the-art weather forecasting method (HRES) in 10-day prediction acc.

[1] Lam, Remi, et al. "GraphCast: Learning skillful medium-range global weather 
forecasting." arXiv preprint arXiv:2212.12794 (2022).
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Case study: GNN-based simulation

GNS

(Sanchez-Gonzalez et al., 
ICML 2020)

MeshGraphNets LAMP

HGNS

Momentum-
conserved CConv

(Pfaff et al., ICLR 2021, 
outstanding paper)

(Wu et al., KDD 2022)

(Wu et al., ICLR 2023, 
spotlight)

(Prantl et al., 
NeurIPS 2022)

symmetry

large-scale

multi-resolution

GraphCast

(Lam et al., 2022)
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Case study: MeshGraphNets
Task: Mesh-based simulation
Main contribution: Introduced MeshGraphNets [1]:
• World-space edges
• Supervised remeshing
Results: accurate prediction on many different systems.

Example predictions
[1] Pfaff, Tobias, et al. "Learning mesh-based simulation with graph networks." ICLR 2021
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Case study: GNN-based simulation

GNS

(Sanchez-Gonzalez et al., 
ICML 2020)

MeshGraphNets LAMP

HGNS

Momentum-
conserved CConv

(Pfaff et al., ICLR 2021, 
outstanding paper)

(Wu et al., KDD 2022)

(Wu et al., ICLR 2023, 
spotlight)

(Prantl et al., 
NeurIPS 2022)

symmetry

large-scale

multi-resolution

GraphCast

(Lam et al., 2022)
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Case study: GNN-based simulation

GNS

(Sanchez-Gonzalez et al., 
ICML 2020)

MeshGraphNets LAMP

HGNS

Momentum-
conserved CConv

(Pfaff et al., ICLR 2021, 
outstanding paper)

(Wu et al., KDD 2022)

(Wu et al., ICLR 2023, 
spotlight)

(Prantl et al., 
NeurIPS 2022)

symmetry

large-scale

multi-resolution

GraphCast

(Lam et al., 2022)

Other examples where symmetry
helps:
• Equivariant GNNs [1] for molecular 

prediction
• Deep Potential Molecular 

Dynamics [2]
[1] Satorras, Vıctor Garcia, Emiel Hoogeboom, and Max Welling. "E (n) equivariant graph neural networks." ICML, 2021.
[2] Zhang, Linfeng, et al. "Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics." Physical review letters 120.14 (2018): 143001.
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Case study: GNN-based simulation

ut: state of the system. Represented as a graph (e.g., mesh, particles, molecules)
: Graph Neural Network (GNN)

Fluid dynamics, 
computer graphics

Such graph-structured data is universal across disciplines:

Mesh-based 
simulation for PDEs

Dislocation in 
materials

Proteins and small 
molecules

Challenges:
● Large-scale
● Multi-resolution
● Long-term accuracy
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Case study: neural operator-based simulation

ut: state of the system. Represented as a infinite-dimensional function 𝑢(𝑥) or 𝑢(𝑥, 𝑡).
: Neural operator

Challenges:
● Large-scale
● Multi-resolution
● Long-term accuracy

Benefits:
• Mesh-free 
• Allow super-resolution

Main categories:
• Fourier Neural Operator (FNO) [1]
• DeepONet [2]
• Physics Informed Neural Network 

(PINN) [3]
[1] Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." ICLR 2021
[2] Lu, Lu, et al. "Learning nonlinear operators via DeepONet based on the universal approximation 
theorem of operators." Nature machine intelligence 3.3 (2021): 218-229.
[3] Raissi et al., Journal of Computational physics 378 (2019): 686-707
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Case study: neural operator-based simulation

ut: state of the system. 
: learned neural surrogate models

Challenges:
● Large-scale
● Multi-resolution
● Long-term accuracy

Other architectures are possible: 
• Transformers
• CNNs, UNets
• Latent evolution
• Neural ODEs
• Solver-in-the-loop
• …(your new invention)

ML techniques: 
• Supervised learning
• Representation learning
• Reinforcement learning
• Diffusion models
• Uncertainty quantification and active learning
• Generalization bounds and certifiable prediction
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AI for scientific simulation

Scientific simulation: simulate the dynamics or steady state of the system, given 
initial state, boundary condition and parameters of the system

AI for scientific simulation: develop machine learning (ML) methods for scientific 
simulation, improving its speed and/or accuracy
• ML for simulating dynamics
• ML for simulating steady state
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AI for scientific simulation

Scientific simulation: simulate the dynamics or steady state of the system, given 
initial state, boundary condition and parameters of the system

AI for scientific simulation: develop machine learning (ML) methods for scientific 
simulation, improving its speed and/or accuracy
• ML for simulating dynamics
• ML for simulating steady state



59

Case study: neural operator-based simulation

u*
Parameter and 
boundary condition Steady state

Example 1: second order elliptic PDE (e.g., Poisson's equation):

Important in materials, plasma physics, elasticity, hydrology.

Techniques:
• Neural operators (e.g., FNO [1], GKN [2]), PINNs [3]
• GNNs  

[1] Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." ICLR 2021
[2] Li, Zongyi, et al. "Neural operator: Graph kernel network for partial differential equations." arXiv 
preprint arXiv:2003.03485 (2020).
[3] Raissi et al., Journal of Computational physics 378 (2019): 686-707

?
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Case study: neural operator-based simulation

u*
Parameter and 
boundary condition Steady state

?

Example 2: protein folding, polymer simulation

Techniques:
• AlphaFold 2 [1]
• GNNs
• …

[1] Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." Nature 596.7873 
(2021): 583-589.
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AI for scientific simulation: broader impact

A. Digital twins（数字孪生）
B. Meta-verse（元宇宙）

Digital twins: can significantly boost the 
efficiency, safety, and fast iteration across 
industry

Meta-verse: creates a new digital universe
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AI for science: questions, advances and relations with ML

1. AI for scientific simulation
2. AI for scientific design
3. AI for scientific discovery

Model

Discovery 
(structures, laws)

Design
(parameters, control, 
experimentation)

Simulation
(dynamics, 
steady state)

Scientific
System
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AI for science: questions, advances and relations with ML

1. AI for scientific simulation
2. AI for scientific design
3. AI for scientific discovery

Scientific 
System Model

Discovery 
(structures, laws)

Design
(parameters, control, 
experimentation)

Simulation
(dynamics, 
steady state)



?
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AI for scientific design

ut: original state of the system. Can be an infinite-dimensional function 𝑢(𝑡, 𝑥)
as solution to a PDE, or a graph (e.g., mesh, particles, molecules)

a: static parameters of the system that does not change with time       
(e.g., parameters of PDE, spatially varying diffusion coefficient)

: boundary condition of the system

: neural surrogate models (CNN, GNN, neural operators)

Objective
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AI for scientific design
AI for scientific design:
• boundary condition 𝝏𝕏: plane shape, rocket shape, underwater robot shape

• system itself 𝒖𝟎, a: design proteins, small molecules, materials; or state estimation

• external control: control pulses for controlled nuclear fusion, revert global warming
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AI for scientific design

Method categories:
1. (Learned) simulator as an inner loop
• Physical design with GNS [1]

3. Direct mapping
• Transformer for boundary value 

inverse problems [3]

2. Iterative convergence
• Diffusion models (e.g., GeoDiff [2]), 

energy-based models

[1] Allen, Kelsey R., et al. "Physical design using differentiable learned simulators." NeurIPS 2022
[2] Xu, Minkai, et al. "Geodiff: A geometric diffusion model for molecular conformation generation." ICLR 2022
[3] Guo, Ruchi, Shuhao Cao, and Long Chen. "Transformer meets boundary value inverse problems." NeurIPS 2022
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Case study: physical design with differentiable learned simulators
Task: design boundary for particle-based fluid simulation
Main contribution:
• Backpropagation through the entire GNN-based simulation

Results: able to design various boundaries, outperforms sample-based traditional methods

[1] Allen, Kelsey R., et al. "Physical design using differentiable learned simulators." NeurIPS 2022
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AI for scientific design

Method categories:
4. Reinforcement learning (RL) for designing the system:

GCPN [1]

[1] You, Jiaxuan, et al. "Graph convolutional policy network for goal-directed molecular graph generation." 
Advances in neural information processing systems 31 (2018).
[2] Jain, Moksh, et al. "Biological sequence design with gflownets." ICML 2022

GFlowNet [2]
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AI for scientific design

Method categories:
4. RL for controlling the system:

[1] Degrave, Jonas, et al. "Magnetic control of tokamak plasmas through deep reinforcement 
learning." Nature 602.7897 (2022): 414-419.

Controlling nuclear fusion plasma [1] 
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AI for scientific design

Method categories:
4. RL for designing experiment:

[1] Nautrup, Hendrik Poulsen, et al. "Optimizing quantum error correction codes with reinforcement learning." 
Quantum 3 (2019): 215.

Design quantum computing experiment
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AI for scientific design

Related machine learning techniques:
• Reinforcement learning
• Diffusion models
• Graph Neural Networks
• Active learning
• Representation learning
• …
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AI for scientific design: broader impact

A. Digital twins（数字孪生）
B. Aerospace, energy, materials, etc.

Digital twins: can significantly boost the 
efficiency, safety, and fast iteration across 
industry

Aerospace, energy, materials, 
etc.
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AI for science: questions, advances and relations with ML

1. AI for scientific simulation
2. AI for scientific design
3. AI for scientific discovery

Scientific 
System Model

Discovery 
(structures, laws)

Design
(parameters, control, 
experimentation)

Simulation
(dynamics, 
steady state)
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Lamp in 
Pisa 
Cathedral

young 
Galileo 

As a student, Galileo famously observed a lamp swinging in Pisa 
Cathedral and timed its swing against his pulse.

He concluded: the lamp’s period was constant and independent 
of its amplitude.

Galileo then suggested a pendulum could control a clock.

1. Focus on the relevant concept
2. Simplicity
3. Generalization to novel concepts
4. Transfer this knowledge to other human.

Based on this scientific discovery process, we developed complex 
theories, e.g., theory of light, gravity, quantum theory, central dogma.

Galileo and the Lamp

Key components of the scientific discovery process:



2. Theory 
learning

Theories/laws

3. Concept 
generalization

Observation/
measurement
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1. Concept 
identification 

/representation
Relevant 
concepts

pendulum;
collective modes for materials;
relational structures inside cell

AI for scientific discovery
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AI for scientific discovery: 1. Concept identification & representation

• Cell type discovery and universal cell embeddings
• Rare-event selection in particle physics

• Discover and represent important aspect of the system, e.g.,

• Causal learning
• Structure learning

• Discover the structure and causal relations in a system

• Discover important invariances of the system [1]

[1] Liu, Ziming, and Max Tegmark. "Machine learning conservation laws from 
trajectories." Physical Review Letters 126.18 (2021): 180604.



2. Theory 
learning

Theories/laws

3. Concept 
generalization

Observation/
measurement
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1. Concept 
identification 

/representation
Relevant 
concepts

pendulum;
collective modes for materials;
relational structures inside cell

AI for scientific discovery: 2. theory learning 
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AI for scientific discovery: 2. theory learning 

• Discover interpretable, universal equations on the relevant concepts

Techniques:
• Recursion and divide and conquer [1]
• AI Physicist [2]
• Reinforcement learning [3]

[1] Udrescu, Silviu-Marian, et al. "AI Feynman 2.0: Pareto-optimal symbolic regression 
exploiting graph modularity." NeurIPS 2020
[2] Wu, Tailin, and Max Tegmark. "Toward an artificial intelligence physicist for 
unsupervised learning." Physical Review E 100.3 (2019): 033311.
[3] Mundhenk, Terrell, et al. "Symbolic regression via deep reinforcement learning 
enhanced genetic programming seeding." NeurIPS 2021
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AI Feynman 2.0 [1]: rediscover top-100 physics equations in Feynman lectures

[1] Udrescu, Silviu-Marian, et al. "AI Feynman 2.0: Pareto-optimal symbolic regression 
exploiting graph modularity." NeurIPS 2020

Some equations discovered by AI Feynman 2.0:
Training data: {(x, y)}
Goal: 
discover symbolic function 
𝑓: 𝑥 → 𝑦

It detects symmetry from first 
training a neural net

AI for scientific discovery: 2. theory learning case study 



2. Theory 
learning

Theories/laws

3. Concept 
generalization

Observation/
measurement
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1. Concept 
identification 

/representation
Relevant 
concepts

pendulum;
collective modes for materials;
relational structures inside cell

AI for scientific discovery: 3. concept generalization
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AI for scientific discovery: 3. concept generalization

• Generalize to more complex concept in inference

Techniques:
• Energy-based models [1][2]
• Few-shot learning [3]
• In-context learning [4] with large-language models

[1] Du, Yilun, Shuang Li, and Igor Mordatch. "Compositional visual generation with energy based 
models." NeurIPS 2020
[2] Wu, Tailin, et al. "Zeroc: A neuro-symbolic model for zero-shot concept recognition and acquisition at 
inference time." NeurIPS 2022
[3] Cao, Kaidi, Maria Brbic, and Jure Leskovec. "Concept learners for few-shot learning." ICLR 2021
[4] Brown, Tom, et al. "Language models are few-shot learners." NeurIPS 2020



• Why AI + Science?
• AI for science: important questions, recent advances and relations with 

machine learning
• AI for scientific simulation
• AI for scientific design
• AI for scientific discovery

• Science for AI: important questions and recent advances
• Discussion: where to find the next AlphaFold and chatGPT?

• What is the next big problems for AI + Science?
• Potential bottlenecks and mid-term roadmap
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Outline
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Science for AI: how science brings new insights to AI

Concepts Source Application
Symmetry physics equivariant GNN [1]
Diffusion physics Diffusion models [2]
Energy physics Energy-based models, Boltzmann machines
Hamiltonian physics Hamiltonian Monte Carlo [3], Hamiltonian Neural Networks [4]
Grid cells neuroscience Grid cells for navigation [5]
Working memory neuroscience Working Memory Graphs [6]
… … …

[4] Greydanus, Samuel, Misko Dzamba, and Jason Yosinski. "Hamiltonian neural 
networks." Advances in neural information processing systems 32 (2019).
[5] Banino, Andrea, et al. "Vector-based navigation using grid-like representations in 
artificial agents." Nature 557.7705 (2018): 429-433.
[6] Loynd, Ricky, et al. "Working memory graphs." ICML 2020

[1] Satorras, Vıctor Garcia, Emiel Hoogeboom, and Max Welling. "E 
(n) equivariant graph neural networks." ICML 2021
[2] Sohl-Dickstein, Jascha, et al. "Deep unsupervised learning using 
nonequilibrium thermodynamics." ICML 2015.
[3] Duane, S. "Kennedy, AD, Pendleton, BJ, and Roweth, 
D.(1987),“Hybrid Monte Carlo,”." Physics Letters.

Famous concepts:



85

Science for AI: how science brings new insights to AI

Concepts Source Application
Fourier transform math FNO [1]
Path integral physics Path integral-based GNN [2]
Mean field theory physics Mean Field Multi-Agent Reinforcement Learning [3],

How to Train 10,000-Layer Vanilla CNNs [4] 
Phase transitions physics Phase transitions in the information bottleneck [5]
Optimal transport math W-GAN [6]
Arrow of time physics Learning the arrow of time for RL [7]
… … …

[4] Xiao, Lechao, et al. "Dynamical isometry and a mean field theory of cnns: How to 
train 10,000-layer vanilla convolutional neural networks." ICML 2018
[5] Wu, Tailin, and Ian Fischer. "Phase transitions for the information bottleneck in 
representation learning." ICLR 2020
[6] Arjovsky, 2017
[7] Rahaman, Nasim, et al. "Learning the arrow of time for problems in reinforcement 
learning." ICLR 2020

[1] Li, Zongyi, et al. "Fourier neural operator for parametric partial 
differential equations." ICLR 2021
[2] Ma, Zheng, et al. "Path integral based convolution and pooling for 
graph neural networks." NeurIPS 2020
[3] Yang, Yaodong, et al. "Mean field multi-agent reinforcement 
learning." ICML 2018

Famous concepts:
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Science for AI: how science brings new insights to AI

Physics-inspired generative models:
• Diffusion models
• Energy-based models
• Electrodynamics-based models
• Quantum generative models

Physics-inspired learning theory:
• Phase transitions
• Particle interactions
• Field theory

Poisson Flow Generative Models [1]

Understanding grokking [2]
[1] Xu, Yilun, et al. "Poisson flow generative models." NeurIPS 2022
[2] Liu, Ziming, et al. "Towards understanding grokking: An effective theory of 
representation learning." Advances in Neural Information Processing Systems 35 
(2022): 34651-34663.
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Ad
I will join Westlake University（西湖大学）as 
an assistant professor in the engineering 
department, establishing AI + Science group

Research directions:
• AI for scientific simulation and design

• For fluid, materials, biomedicine, ME
• AI for scientific discovery

• For biomedicine
• Representation learning

• With GNNs

Please reach out to me (tailin@cs.stanford.edu) for
• Collaboration
• Postdoc, PhD, internship, visiting scholar positions

Have close collaborations with Stanford CS, EE, ME and MIT CS 

mailto:tailin@cs.stanford.edu
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Discussion: what are the next big problems for AI + Science?

In 2019, when Demis Hassabis (CEO of DeepMind) gave a talk at MIT, he said that
• “The year 2019 is a watershed moment for DeepMind, where the full company turns its 

focus on AI for Science.”

Now, we see that DeepMind has made exciting progress:
• AlphaFold 2
• RL for controlling fusion plasma
• AI for Mathematics
• …

https://cbmm.mit.edu/video/power-self-learning-systems
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Discussion: what are the next big problems for AI + Science?

Both AlphaFold and chatGPT satisfy the above criteria

Criteria: 
1. Universal and impactful: whose solution can enable the solutions for tens or hundreds of 

problems
2. Ambitious but still feasible within 2-3 years
3. Have enough data
4. Have a clear evaluation objective



91

Discussion: what are the next big problems for AI + Science?
My idea:

A model & platform for general inverse design for 
engineering

Specification of objective
(in text, function, etc.)

Model

Can be used across science and engineering
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Discussion: what are the next big problems for AI + Science?
My idea:

Specification of objective
(in text, function, etc.)

Model

Does it satisfy the criteria?
1. Universal and impactful: whose solution can 

enable the solutions for tens or hundreds of problems
2. Ambitious but still feasible within 2-3 years
3. Have enough data
4. Have a clear evaluation objective

A model & platform for general inverse design for 
engineering
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Discussion: potential bottlenecks for AI + Science

• ImageNet for image classification, OGB for GNNs, OpenAI Gym for RL
• AI + Science community needs several these easy-to-use data/environment:

• Great opportunity!

• Easy to use data and environment for training and evaluation 

• Computation

• Trustworthiness for model:
• Uncertainty quantification
• Generalization bounds

• Domain knowledge

• Our imagination!

Solution:
• More open-discussions
• Cross-university/industry collaborations (build 

an ecosystem)
• …
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