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Graphs (Meshes) in simulation - Adaptivity

2-107*m

Adaptive meshes:

A0m 5000 nodes

Uniform grid at 2 - 10™* m:
40,000,000,000 nodes




Graphs (Meshes) in simulation - Adaptivity

Regular mesh: 1k nodes Adaptive mesh: 1k nodes
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Learned simulation using GNN

« Engineered simulation  Learned simulation

« Time consuming to build > « General framework
« Resources consuming to run
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« Fast to run
« Only as accurate as model > « As accurate as data

« model may be over-simplified

* Not good for solving inverse problem  ——— , a5t forward model, get gradient for free

Equivariance

| e With GNN
f(gx)=gf(x) . o
f £ « Spatial-Temporal Adaptivity
' f/ f/ « Dynamic graph
v‘- e Invariance .‘.@ } - el A |ndUCtive biases
€ = b
f(gx)=f(x)

* e.g. invariance/equivariance



Outline

e Framework:

* Learning mesh-based simulation with Graph Networks
(MeshGraphNet, Tobias Pfaft, etl. 2021)

« Application:

« GraphCast: Learning skillful medium-range global weather
forecasting (Remi Lam, etl, 2022)

https://arxiv.org/abs/2212.12794
https://arxiv.org/pdf/2010.03409.pdf



https://arxiv.org/abs/2212.12794
https://arxiv.org/pdf/2010.03409.pdf

Learning Mesh-Based Simulation with Graph Networks
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Learning Mesh-Based Simulation with Graph Networks
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Learning Mesh-Based Simulation with Graph Networks

Internal dynamics:
Estimating differential
operators on the
simulation manifold

External dynamics:
Computing e.g.
collision and contact




Learning Mesh-Based Simulation with Graph Networks
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Learning Mesh-Based Simulation with Graph Networks
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Learning Mesh-Based Simulation with Graph Networks
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MeshGraphNet: Learning mesh-based simulation with Graph
Networks

(a) FlagDynamic (b) DeformingPlate (c) CylinderFlow (d) Airfoil
actuator
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Evaluations: MeshGraphNet is versatile

Ground truth Predi

Ground truth Prediction
mach number 0.66
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Results: Incompressible Fluids
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Results: Aerodynamics

Ground truth Prediction

mach number 0.66 Training data:

angle of attack -22.3

SU2

Network output:
Velocity Field
Density Field
Pressure Field
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Result: Cloth Dynamics

Training data:
Arcsim

Network output:
Per-node
acceleration

wind ——>
P



Result: Structural Mechanics

Ground truth Prediction

Training data:
COMSOL

Network output:
Per-node
position change

von mises stress [MPa]
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MeshGraphNet: Learning mesh-based simulation with Graph
Networks

(a) FlagDynamic (b) DeformingPlate (c) CylinderFlow (d) Airfoil
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« Versatile

* Better and stabler rollout compare to prior works



Stable Rollout - noise

 For stable roll-out
« Add noise to training dataset

-> model see inputs that are corrupted by noise

Dataset Batch size Noise scale
FLAGSIMPLE 1 pos: le-3
FLAGDYNAMIC 1 pos: 3e-3
SPHEREDYNAMIC 1 pos: le-3
DEFORMINGPLATE 2 pos: 3e-3
CYLINDERFLOW 2 momentum: 2e-2
AIRFOIL 2 momentum: lel, density: le-2




Stable Rollout - evaluation

(a) lel (c) le-2
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Ground truth GNS GNS
1-step history 5-step history
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MeshGraphNet: Learning mesh-based simulation with Graph

Networks
(a) FlagDynamic (b) DeformingPlate (c) CylinderFlow (d) Airfoil
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* Versatile
* Better and stabler rollout compare to prior works

« Spatial-temporal Adaptive resolution (adaptive mesh refinement)



Adaptive Remeshing

« Stepl: Decide target resolution at each point in space
(domain specific heuristics, sizing field tensor for cloth

simulation)
e Step2: Adjust the mesh

« MeshGraphNet:
e Predict sizing field directly using graph neural
network
e Given GT supervision from classical approach
mentioned above

Flag in world space

uonn|osay
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MeshGraphNet: Learning mesh-based simulation with Graph

Networks
(a) FlagDynamic (b) DeformingPlate (c) CylinderFlow (d) Airfoil
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Versatile

Better and stabler rollout compare to prior works

Spatial-temporal Adaptive resolution (adaptive mesh refinement)

« Generalize to large domain



Generalize to more nodes

e Learned local Interaction
e Train on 2k nodes, generalize to >20k nodes
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Generalize to more Nodes



MeshGraphNet: Learning mesh-based simulation with Graph

Networks
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Versatile

Better and stabler rollout compare to prior works

Spatial-temporal Adaptive resolution (adaptive mesh refinement)

« Generalize to large domain



ERAS

GraphCast: Learning skillful medium-range global weather
forecasting

Why Learning?
- numerical weather prediction do not scale well with data

- there vast archives of weather and climatological observations
available

2018- 01 -31 OO OO UTC 2018- 02—04 OO OO UTC 2018-02- 08 OO OO UTC




ERAS

GraphCast: Learning skillful medium-range global weather
forecasting

1. Accuracy
® more accurate than ECMWF's deterministic operational forecasting system
* outperforms the most accurate previous ML-based weather forecasting model
2. Speed
® generate a 10-day forecast (35 gigabytes of data) in under 60 seconds on Cloud TPU
v4 hardware.

2018- 01 31 OO 00 UTC 2018- 02—04 OO OO UTC 2018-02- 08 OO OO UTC




Architecture

X1 = GraphCast(x*, xt™1)

X — (GraphCast(X, X©1), GraphCast(X™!, X%), . . ., GraphCast(X®T~1, X1*T-2))

~

1...T autoregressive iterations

a) Input weather state b) Predicting the next state c) Rolling out a forecast

i AN
et 1S N
| 1S

&

GraphCast




rchitecture

d) Encoder e) Processor f) Decoder
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Training

LMSE = sjwja; (deH d9+r)2 (2)
|Dbatch| Z Z |Go.25°| Z Z T

do€Dpatch Tel Ttram leGO 25" Jjed ~~ d

e —~ ~ S—— g — squared error
forecast date-time lead time spatial location variable-level

e autoregressive, multi-step loss

help minimize error accumulation over long forecasts

a) Training phase 1 b) Training phase 2 <) Training phase 3
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Training schedule.



Evaluation

« Compare with the HRES 10-day forecast and other baseline ML
models.

- 1
L=
st = [l 2.

do€Deyal

1 ~do+T do+T -
\/|Go.25°|lz ai(xf,i X ) (A.20)

i€Go a5

where

dy € D, represent forecast initialization date-times in the evaluation dataset,
j € J indexes the variable and level, e.g., J = {z1000, z850,...,2T, MmsL},
i € Gg.o5° are the location (latitude and longitude) coordinates in the grid,

f‘l’” and xf"” are predicted and target values for some variable-level, location, and lead time,
a; is the area of the latitude-longitude grid cell (normalized to unit mean over the grid) which
varies with latitude.
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Open Questions

« How to incorporate appropriate symmetry and conservation properties into the
architecture of a Graph Neural Network (GNN)?

« How to simulate multiscale systems? Here, multiscale can include spatial, temporal,
etc

« How to achieve more accurate simulations with reduced computational cost for
graphs with a large number of nodes (such as millions or billions)?

« How to perform complex and diverse inverse design on graphs with a large number
of nodes?



GraphCast was trained to minimize an objective function over 12-step forecasts (3 days) against ERAS
targets, using gradient descent. The objective function was,

1 1 nd do+T2
Lysg = — Z T Z IGo - Z Z sjwja; (X7 = x7™) (2)

D
| batch | dO GDbatch tel ‘Ttrain IGGO 25° ] = N

~ - ~ ~~ — squared error
forecast date-time lead time  spatial location variable-level

which averages the squared errors over forecast date-times, lead times, spatial locations, variables
and levels, where

* do € Dpaon Tepresent forecast initialization date-times in a batch of forecasts in the training set,
* T € 1 : Tyain are the lead times that correspond to the Ty i, autoregressive steps during training,
* i € Gg.o5 are the spatial latitude and longitude coordinates in the grid,
* j e Jindexes the variable and level, e.g., J = {z1000, z850,...,2T, MSL},

“i"” and xi°+ are predicted and target values for some variable-level, location, and lead time,
* s; is the per-variable-level inverse variance of single-timestep differences,

* wj is the per-variable-level loss weight,
* q; is the normalized area of the latitude-longitude grid cell, which varies with latitude.

-1
The quantities s; = Vj, [xf‘;l - X; fl are per-variable-level inverse variance estimates of the time

differences. The w; are per-variable-level loss weights we specified in a simple way, to control
how heavily different target variables are weighed during optimization. The a; weight depends on
latitude, and weights the errors proportionally to the area of their corresponding grid cells. See the
Appendix A.3 for full details of these symbols and indices.



Input

Type Variable name Short ECMWEF Role (accumulation
name Parameter ID period, if applicable)

Atmospheric Geopotential vA 129 Input/Predicted
Atmospheric Specific humidity q 133 Input/Predicted
Atmospheric Temperature t 130 Input/Predicted
Atmospheric U component of wind u 131 Input/Predicted
Atmospheric V component of wind v 132 Input/Predicted
Atmospheric Vertical velocity w 135 Input/Predicted

Single 2 metre temperature 2t 167 Input/Predicted

Single 10 metre u wind component  10u 165 Input/Predicted

Single 10 metre v wind component  10v 166 Input/Predicted

Single Mean sea level pressure msl 151 Input/Predicted

Single Total precipitation tp 28 Input/Predicted (6h)

Single TOA incident solar radiation  tisr 212 Input (1h)

Static Geopotential at surface yA 129 Input

Static Land-sea mask Ism 172 Input

Static Latitude n/a n/a Input

Static Longitude n/a n/a Input

Clock Local time of day n/a n/a Input

Clock Elapsed year progress n/a n/a Input

Table A.1 | ECMWF variables used in our datasets. The “Type” column indicates whether the variable
represents a static property, a time-varying single-level property (e.g., surface variables are included), or a
time-varying atmospheric property. The “Variable name” and “Short name” columns are ECMWF’s labels. The
“ECMWEF Parameter ID” column is a ECMWEF’s numeric label, and can be used to construct the URL for ECMWF’s
description of the variable, by appending it as suffix to the following prefix, replacing “ID” with the numeric
code: https://apps.ecnwf.int/codes/grib/param-db/?id=ID. The “Role” column indicates whether
the variable is something our model takes as input and predicts, or only uses as input context (the double

horizontal line separates predicted from input-only variables, to make the partitioning more visible.




grid nodes

Grid nodes VC represents the set containing each of the grid nodes v . Each grid node represents a
vertical shce of the atmosphere at a given latitude-longitude point, i. The features associated with each
grid node v are v, — [xt Lxt, =1 £ f*+1 ¢, where x! is the time-dependent weather state
Xt correspondlng to grid node v and 1ncludes all the predlcted data variables for all 37 atmospheric
levels as well as surface Varlables The forcing terms f* consist of time-dependent features that can
be computed analytically, and do not require to be predicted by GraphCast. They include the total
incident solar radiation at the top of the atmosphere, accumulated over 1 hour, the sine and cosine
of the local time of day (normalized to [0, 1)), and the sine and cosine of the of year progress
(normalized to [0, 1)). The constants ¢; are static features: the binary land-sea mask, the geopotential
at the surface, the cosine of the latitude, and the sine and cosine of the longitude. At 0.25° resolution,
there is a total of 721 x 1440 = 1, 038, 240 grid nodes, each with (5 surface variables + 6 atmospheric

variables x 37 levels) x 2 steps + 5 forcings X 3 steps + 5 constant = 474 input features.



Mesh nodes

Mesh nodes VM represents the set containing each of the mesh nodes v?’l. Mesh nodes are placed
uniformly around the globe in a R-refined icosahedral mesh MR. M? corresponds to a unit-radius
icosahedron (12 nodes and 20 triangular faces) with faces parallel to the poles (see Figure 1g). The
mesh is iteratively refined M" — M1 by splitting each triangular face into 4 smaller equilateral faces,
resulting in an extra node in the middle of each edge, and re-projecting the new nodes back onto
the unit sphere.'® Features v?/[’feat“res associated with each mesh node vM include the cosine of the
latitude, and the sine and cosine of the longitude. GraphCast works with a mesh that has been refined
R = 6 times, M®, resulting in 40,962 mesh nodes (see Supplementary Appendix Table A.2), each with

3 input features.

Refinement 0 1 2 3 4 5 6
Num Nodes 12 42 162 642 2,562 10,242 40,962
Num Faces 20 80 320 1,280 5,120 20,480 81,920
Num Edges 60 240 960 3,840 15,360 61,440 245,760
Num Multilevel Edges | 60 300 1,260 5,100 2,0460 81,900 327,660

Table A.2 | Multi-mesh statistics. Statistics of the multilevel refined icosahedral mesh as function of the
refinement level R. Edges are considered to be bi-directional and therefore we count each edge in the mesh

twice (once for each direction).



Mesh edges

Mesh edges &M are bidirectional edges added between mesh nodes that are connected in the mesh.
Crucially, mesh edges are added to EM for all levels of refinement, i.e., for the finest mesh, M®, as well
as for M>, M*, M3, M?, M! and MP. This is straightforward because of how the refinement process
works: the nodes of M™! are always a subset of the nodes in M". Therefore, nodes introduced at
lower refinement levels serve as hubs for longer range communication, independent of the maximum
level of refinement. The resulting graph that contains the joint set of edges from all of the levels of
refinement is what we refer to as the “multi-mesh”. See Figure le,g for a depiction of all individual
meshes in the refinement hierarchy, as well as the full multi-mesh.

For each edge e?}’IM_wM connecting a sender mesh node v to a receiver mesh node vM, we build
M)
M, features l

edge features e v, using the position on the unit sphere of the mesh nodes. This includes the
r

length of the edée, and the vector difference between the 3d positions of the sender node and the
receiver node computed in a local coordinate system of the receiver. The local coordinate system of
the receiver is computed by applying a rotation that changes the azimuthal angle until that receiver
node lies at longitude 0, followed by a rotation that changes the polar angle until the receiver also
lies at latitude 0. This results in a total of 327,660 mesh edges (See Appendix Table A.2), each with 4
input features.



Grid2Mesh edges

Grid2Mesh edges &%?M are unidirectional edges that connect sender grid nodes to receiver mesh

nodes. An edge ¢52M | is added if the distance between the mesh node and the grid node is smaller

or equal than 0.6 times!” the length of the edges in mesh M® (see Figure 1) which ensures every grid

node is connected to at least one mesh node. Features eS2M- e qre byt the same way as those for

the mesh edges. This results on a total of 1,618,746 Grid2Mesh edges, each with 4 input features.

Mesh2Grid edges &M2C are unidirectional edges that connect sender mesh nodes to receiver grid

nodes. For each grid point, we find the triangular face in the mesh M® that contains it and add three

Mesh2Grid edges of the form eN{ngG, to connect the grid node to the three mesh nodes adjacent
r

US
to that face (see Figure 1). Features eNl{fG’ﬁéatureS are built on the same way as those for the mesh

Usg —Up

edges. This results on a total of 3,114,720 Mesh2Grid edges (3 mesh nodes connected to each of the
721 x 1440 latitude-longitude grid points), each with four input features.



