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These three tasks are fundamental in science and engineering
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AI for Science:
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AI for scientific design: definition

ut: original state of the system. Can be an infinite-dimensional function 𝑢!(𝑥)  
     as solution to a PDE, or a graph, or a vector (for ODE)

a: static parameters of the system that does not change with time       
    (e.g., parameters of PDE, spatially varying diffusion coefficient)

: boundary condition of the system

: neural surrogate models (CNN, GNN, neural operators)

Objective

given

to optimize/infer

to optimize/infer

Optimize the design variables

?
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Compositional inverse design: definition

Given objective 𝐽 𝑈 𝛾 , 𝛾 , find design parameters 𝛾 that minimize 𝐽, where 
the parameters 𝛾 and/or the state 𝑈 are more complex than in training. 

For example:
Training: we only see how the fluid interacts with 
each part of the airplane 

Test: design the whole airplane shape
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Compositional inverse design: significance

• Inverse design is prevalent in science and engineering:

• Helps to explore continuous, high-dimensional design space, potential to 
find designs not imagined by humans

Mechanical engineeringmaterials science Controlled nuclear fusion
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Compositional inverse design: difficulty

• Complex design space: 
• High Computational cost
• Complex composition relations

• Complex dynamics:
• How to characterize interaction between optimization of shape

with physical process

• Generalization: 
• How to generalize to more complex composition scenarios
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Compositional inverse design: limitation of prior works

1. Traditional physical simulation methods (e.g., cross-entropy method)：
• High accuracy but low efficiency
• Need rich expert knowledge
• Hard to deal with high-dimensional design space
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Compositional inverse design: limitation of prior works

2. Recent methods using deep learning

u0 u1 u2 uT…

𝛾 𝛾 𝛾 𝛾

• First, learn a surrogate forward model that autoregressively 
predict the dynamics 𝑈 !,#  from the parameters 𝛾

• Then, using the objective 𝐽 𝑈 !,# 𝛾 , 𝛾 , doing backpropagation and optimize 𝛾

𝐽 𝑈 !,# 𝛾 , 𝛾

[1] Allen, Kelsey R., et al. "Physical design using differentiable learned simulators." NeurIPS 2022
[2] Chen, Wei, and Arun Ramamurthy. "Deep generative model for efficient 3D airfoil parameterization and generation." AIAA Scitech 2021 Forum. 2021.
[3] Zhou, Linqi, Yilun Du, and Jiajun Wu. "3d shape generation and completion through point-voxel diffusion." Proceedings of the IEEE/CVF International 
Conference on Computer Vision. 2021.

Backpropagation through time
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Compositional inverse design: limitation of prior works

2. Recent methods using deep learning

• Limitations:
• Easy to fall into adversarial mode

• Hard to design more complex parameters

Designed boundary 
shape and fluid velocity

Reasonable boundary 
shape and fluid velocity

[1] Allen, Kelsey R., et al. "Physical design using differentiable learned simulators." arXiv preprint arXiv:2202.00728 (2022).
[2] Chen, Wei, and Arun Ramamurthy. "Deep generative model for efficient 3D airfoil parameterization and generation." AIAA Scitech 2021 Forum. 2021.
[3] Zhou, Linqi, Yilun Du, and Jiajun Wu. "3d shape generation and completion through point-voxel diffusion." Proceedings of the IEEE/CVF International 
Conference on Computer Vision. 2021.



Key components of our method

• Simutaneously design the state 𝑈 and the control/design variable 𝛾
• Joint objective with diffusion models

• Compositional

[1] T. Wu*, T. Maruyama*, L. Wei*, T. Zhang*, Y. Du*, G. 
Iaccarino, J. Leskovec. "Compositional Generative Inverse 
Design." ICLR 2024 spotlight
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Diffusion models
Images and shapes generated by diffusion models:

By DallE 2 By MeshDiffusion [1]

[1] Liu, Zhen, et al. "Meshdiffusion: Score-based generative 3d mesh modeling." ICLR 2023 12



Diffusion models

Robotic policy by diffusion models [1]

[1] Fu, Zipeng, Tony Z. Zhao, and Chelsea Finn. "Mobile ALOHA: Learning Bimanual Mobile 
Manipulation with Low-Cost Whole-Body Teleoperation." arXiv preprint arXiv:2401.02117 (2024).
[2] OpenAI team. “Video generation models as world simulators”, 2024
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Text to video generation by Sora [2]



Diffusion models

Insight: to construct a complex mapping from A to B, it is much easier to 
compose simple mappings

Gaussian distribution data distributiondiffusion model
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Each data sample is a point 
in a manifold in a high-
dimensional space 𝑅$

Diffusion model learns how to 
go from a random Gaussian 
sample to manifold
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DDPM: denoising diffusion probabilistic models [1]

[1] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic 
models." Advances in neural information processing systems 33 (2020): 6840-6851.

Training:

Limitation: Does not consider optimizing the samples with design objectives.
Can only sample examples similar to the training distribution.

𝑥!: training data
𝑥%: training data with t steps of added noise
𝜖&: denoising network to be learned

input: data with 𝑡 steps of added noise
predict: the noise 𝜖 added

Inference (sampling):

denoise step-by-step



Our method: intuition [1] Wu, Tailin, et al. “Compositional Generative Inverse Design.”
ICLR 2024 spotlight

decreasing 𝐽

𝑈[!,#]: state sequence
𝛾: boundary condition

Inference: have an additional objective 𝐽
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Diffusion model essentially learns 
a “energy”-based model 𝐸! to 
model the probability distribution

𝑝! 𝑥 ∝ 𝑒"#! $

The denoising function 𝜖!(𝑥%) is 
essentially the gradient of the 
energy-based model 

𝜖! 𝑥 = ∇$𝐸! 𝑥

𝑥: data samples (e.g., image, trajectory)

Training: only learn 𝐸&



𝑈[!,#]: state sequence

𝛾: boundary condition

?

AI for scientific design: definition

Objective
Optimize the design variables

?

Treat all the variables as a single variable 𝑈 *,+ , 𝛾  and learn to generate 
simultaneously
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Fig.1 of CinDM. By composing generative models specified over subsets of inputs, we present 
an approach that design materials significantly more complex than those seen at training.

Our method: architecture
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Experiment 1: n-body simulation, time composition
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Objective 𝑱: design the initial position and velocity of the two bodies 
such that their end position close to the center 

Train: generate the simulation on 24 steps

Inference: simulation on more time steps (e.g., 54 steps)

24 steps

sharing variables to enforce consistency



Experiment 1: n-body simulation, time composition
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Our method (CinDM) achieves the best design objective with (mostly) lowest simulation MAE 

Baselines: Backpropagation through time [1] and cross-entropy method (CEM) [2]

[1] Allen, Kelsey R., et al. "Physical design using differentiable learned simulators." NeurIPS 2022
[2] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combinatorial 
optimization, Monte-Carlo simulation, and machine learning, volume 133. Springer, 2004.



Experiment 2: n-body simulation, state composition
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Objective 𝑱: design the initial position and velocity of the 𝑛 bodies 
such that their end position close to the center 

Train: generate the simulation on 2 bodies

Inference: simulation on more bodies (e.g., 4 or 8 bodies)

treat the n-body interaction as composition of multiple 2-body interactions



Experiment 2: n-body simulation, state composition
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Our method (CinDM) achieves the best design objective with lowest simulation MAE 



Training: consider a single airfoil interacting with the air flow

Inference: consider multiple airfoils, maximize life-to-drag ratio:（= )*+%
$,-.

）

Compositional design results of our method in 2D airfoil generation. 
Each row represents an example. We show the heatmap of velocity in 
horizontal and vertical direction and pressure in the initial time step, 
inside which we plot the generated airfoil boundaries.

Example of Lily-Pad simulation

Experiment 3: airfoil design, part-to-whole composition
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Our model discovers formation flying
• Reducing the drag by 53.6%
• increasing the lift-to-drag ratio by 66.1%

Experiment 3: airfoil design, part-to-whole composition
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Experiment 3: airfoil design, part-to-whole composition
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𝑣/ 𝑣0 pressure
Experiment 3: airfoil design, part-to-whole composition
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CinDM 
generated:



Adversarial modes by 
baseline neural model 
(FNO with CEM):

𝑣/ 𝑣0 pressure
Experiment 3: inverse design by baseline neural models
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Summary

Compositional inverse design:
• Design boundaries and states more complex than in training

Welcome collaborations and tackle important problems together! 
Contact: wutailin@westlake.edu.cn. Homepage: http://tailin.org 
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Paper:

Code:

Our CinDM method:

• View inverse design problem as energy minimization on the learned 
energy function and design objective, on the joint variable of state 
and boundary.

• Composition by adding energy functions
• Achieves state-of-the-art performance on n-body and airfoil design

mailto:wutailin@westlake.edu.cn
http://tailin.org/
https://openreview.net/forum?id=wmX0CqFSd7
https://github.com/AI4Science-WestlakeU/cindm


My group’s research interest:
• AI for accelerating scientific simulation, design, and control
• AI for scientific discovery
Contact: wutailin@westlake.edu.cn. Homepage: http://tailin.org 
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Tailin Wu’s group @ Westlake University

mailto:wutailin@westlake.edu.cn
http://tailin.org/

